Tag: avr-gdb

Stop-and-Go

The featured picture of this blog post is by WikimediaImages on pixabay.

One typical debugging activity is setting breakpoints and then running the program from breakpoint to breakpoint, inspecting the program’s internal state at each breakpoint. While this sounds simple, it gets complicated when one looks behind the curtain, which we will do in this blog post.

Continue reading

Interrupted and Very Long Single-Steps

The featured picture of this post has been created by DALL-E.

It often happens in embedded debugging that you suddenly end up in the interrupt dispatch table while single-stepping through your code. Another unrelated problem is that sometimes, single steps can take an eternity. In this blog post, I address both issues and describe how to circumvent them in a gdbserver implementation.

Continue reading

Debugging 2.0

The featured image of this blog post is based on vector graphics by captainvector at 123RF.

What keeps people from using a debugger? Well, it is mostly that one has initial costs in terms of setting up the debugging environment and of learning how to use the debugging tool. Hopefully, the next iteration of my hardware debugging tool dw-link, which is able to debug classic ATtinys and ATmegaX8s, will somewhat ease that burden, in particular, because you can buy the accompanying hardware now at Tindie.

I sell on Tindie

Continue reading

dw-link: A New Hardware Debugger for ATtinys and Small ATmegas

As mentioned in an earlier blog post this year, hardware debuggers are the premier class of embedded debugging tools. However, until today, there were only very few relatively expensive tools around supporting the debugWIRE interface that is used by the classic ATtinys and a few ATmega MCUs.

The good news is that now you can turn an Arduino UNO, Nano, or Pro Mini into a debugWIRE hardware debugger that communicates with avr-gdb, the AVR version of the GNU project debugger.

Continue reading

Surprise, Surprise!

The featured image of this post is by Albert Guillaume – Gils Blas, 24 décembre 1895, Public Domain, Link

When you develop a tool for a protocol that is undocumented, it is not surprising that you will encounter situations you will not have be anticipated. This was exactly what I experienced developing the hardware debugger dw-link, which connects debugWIRE MCUs to the GDB debugger. Although a substantial part of the debugWIRE protocol has been reverse-engineered, I encountered plenty of surprising situations: Split personality MCUs, stuck-at-one bits in program counters, secret I/O addresses, half-legal opcodes, and more.

Continue reading

Debugging a Debugger With Itself

The featured image of this post is is a comic from xkcd.com.

The above xkcd comic, which is titled Debugger, alludes to the concern that when you try to apply a particular method to itself, you might not get what you asked for. Turing’s Halting problem is a very famous example of this, i.e., you cannot algorithmically decide whether an algorithm terminates on an input. So, does that issue apply to debuggers as well? In particular, I asked myself whether it makes sense to debug the hardware debugger I am developing with itself.

Continue reading

Link-Time Optimization and Debugging of Object-Oriented Programs on AVR MCUs

The featured image of this post is based on a picture by TheDigitalArtist on Pixabay.

Link-time optimization (LTO) is a very powerful compiler-optimization technique. As I noticed, it does not go very well together with debugging object-oriented programs under GCC, at least for AVR MCUs. I noticed that in the context of debugging an Arduino program, and it took me quite a while to figure out that LTO is the culprit.

Continue reading

Debugging(4): Stub it out!

The featured image is by Hebi B. on Pixabay

How can you use a stub in order to squash your software bugs? This blog post shows how to arrive in 7 easy steps at a working debugging solution using a gdb-stub for some 8-bit AVR MCUs. The only additional hardware you need is an ISP programmer in order to burn a new bootloader (well, if you are satisfied with a very slow-running program, you do not even need this).

Continue reading

Copyright © 2025 Arduino Craft Corner

Theme by Anders NorenUp ↑